378 research outputs found

    Duality and Superconvergence Relation in Supersymmetric Gauge Theories

    Full text link
    We investigate the phase structures of various N=1 supersymmetric gauge theories including even the exceptional gauge group from the viewpoint of superconvergence of the gauge field propagator. Especially we analyze in detail whether a new type of duality recently discovered by Oehme in SU(Nc)SU(N_c) gauge theory coupled to fundamental matter fields can be found in more general gauge theories with more general matter representations or not. The result is that in the cases of theories including matter fields in only the fundamental representation, Oehme's duality holds but otherwise it does not. In the former case, superconvergence relation might give good criterion to describe the interacting non-Abelian Coulomb phase without using some information from dual magnetic theory.Comment: 20 pages, LaTe

    N=1N=1 supersymmetry and the three loop anomalous dimension for the chiral superfield

    Get PDF
    We calculate the three loop anomalous dimension for a general N=1N=1 supersymmetric gauge theory. The result is used to probe the possible existence of renormalisation invariant relationships between the Yukawa and gauge couplings.Comment: 18 pages. Uses Harvmac. Revised version includes discussion of the special case of the Wess-Zumino mode

    Finite Grand Unified Theories and the Quark Mixing Matrix

    Get PDF
    In N = 1 super Yang-Mills theories, under certain conditions satisfied by the spectrum and the Yukawa couplings, the beta functions will vanish to all orders in perturbation theory. We address the generation of realistic quark mixing angles and masses in such finite Grand Unified Theories. Working in the context of finite SUSY SU(5), we present several examples with realistic quark mixing matrices. Non-Abelian discrete symmetries are found to be important in satisfying the conditions for finiteness. Our realistic examples are based on permutation symmetries and the tetrahedral symmetry A4A_4. These examples enable us to address questions such as the decay rate of the proton in finite GUTs.Comment: 16 pages, LaTeX, typos correcte

    Soft supersymmetry breaking and finiteness

    Full text link
    We calculate the two-loop β\beta-functions for soft supersymmetry-breaking interactions in a general supersymmetric gauge theory, emphasising the role of the evanescent couplings and masses that are generic to a non-supersymmetric theory. We also show that a simple set of conditions sufficient for one-loop finiteness renders a theory two-loop finite, and we speculate on the possible significance of finite softly broken theories.Comment: 12pp, uses harvmac, LTH 334. Note added and minor corrections to Eqs. (9), (12) and (16

    Baryonic Regge trajectories with analyticity constraints

    Full text link
    A model for baryonic Regge trajectories compatible with the threshold behavior required by unitarity and asymptotic behavior in agreement with analyticity constraints is given in explicit form. Widths and masses of the baryonic resonances on the N and Δ\Delta trajectories are reproduced. The MacDowell symmetry is exploited and an application is given.Comment: 12 pages, 6 figure

    Stringent constraints on the scalar K pi form factor from analyticity, unitarity and low-energy theorems

    Get PDF
    We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t=0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher order ChPT corrections at the second Callan-Treiman point.Comment: 5 pages latex, uses EPJ style files, 3 figures, replaced with version accepted by EPJ

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve

    Glueballs in a Hamiltonian Light-Front Approach to Pure-Glue QCD

    Get PDF
    We calculate a renormalized Hamiltonian for pure-glue QCD and diagonalize it. The renormalization procedure is designed to produce a Hamiltonian that will yield physical states that rapidly converge in an expansion in free-particle Fock-space sectors. To make this possible, we use light-front field theory to isolate vacuum effects, and we place a smooth cutoff on the Hamiltonian to force its free-state matrix elements to quickly decrease as the difference of the free masses of the states increases. The cutoff violates a number of physical principles of light-front pure-glue QCD, including Lorentz covariance and gauge covariance. This means that the operators in the Hamiltonian are not required to respect these physical principles. However, by requiring the Hamiltonian to produce cutoff-independent physical quantities and by requiring it to respect the unviolated physical principles of pure-glue QCD, we are able to derive recursion relations that define the Hamiltonian to all orders in perturbation theory in terms of the running coupling. We approximate all physical states as two-gluon states, and use our recursion relations to calculate to second order the part of the Hamiltonian that is required to compute the spectrum. We diagonalize the Hamiltonian using basis-function expansions for the gluons' color, spin, and momentum degrees of freedom. We examine the sensitivity of our results to the cutoff and use them to analyze the nonperturbative scale dependence of the coupling. We investigate the effect of the dynamical rotational symmetry of light-front field theory on the rotational degeneracies of the spectrum and compare the spectrum to recent lattice results. Finally, we examine our wave functions and analyze the various sources of error in our calculation.Comment: 75 pages, 17 figures, 1 tabl

    A Comparison of Two Ovine Lumbar Intervertebral Disc Injury Models for the Evaluation and Development of Novel Regenerative Therapies

    Full text link
    © The Author(s) 2018. Study Design: Large animal research. Objective: Lumbar discectomy is the most commonly performed spinal surgical procedure. We investigated 2 large animal models of lumbar discectomy in order to study the regenerative capacity of mesenchymal stem cells following disc injury. Methods: Twelve adult ewes underwent baseline 3-T magnetic resonance imaging (MRI) followed by lumbar intervertebral disc injury by either drill bit (n = 6) or annulotomy and partial nucleotomy (APN) (n = 6). Necropsies were performed 6 months later. Lumbar spines underwent 3-T and 9.4-T MRI prior to histological, morphological and biochemical analysis. Results: Drill bit-injured (DBI) and APN-injured discs demonstrated increased Pfirrmann grades relative to uninjured controls (P <.005), with no difference between the 2 models. Disc height index loss was greater in the APN group compared with the DBI group (P <.005). Gross morphology injury scores were higher in APN than DBI discs (P <.05) and both were higher than controls (P <.005). Proteoglycan was reduced in the discs of both injury models relative to controls (P <.005), but lower in the APN group (P <.05). Total collagen of the APN group disc regions was higher than DBI and control discs (P <.05). Histology revealed more matrix degeneration, vascular infiltration, and granulation in the APN model. Conclusion: Although both models produced disc degeneration, the APN model better replicated the pathobiology of human discs postdiscectomy. We therefore concluded that the APN model was a more appropriate model for the investigation of the regenerative capacity of mesenchymal stem cells administered postdiscectomy

    Sfermion masses in Nelson-Strassler type of models: SUSY standard models coupled with SCFTs

    Get PDF
    We study soft SUSY breaking parameters in the Nelson-Strassler type of models: SUSY standard models coupled with SCFTs. In this type of models, soft SUSY breaking parameters including sfermion masses can be suppressed around the decoupling scale of SCFTs. We clarify the condition to derive exponential suppression of sfermion masses within the framework of pure SCFTs. Such behavior is favorable for degeneracy of sfermion masses. However, the realistic sfermion masses are not quite degenerate due to the gauge couplings and the gaugino masses in the SM sector. We show the sfermion mass spectrum obtained in such models. The aspect of suppression for the soft SUSY breaking parameters is also demonstrated in an explicit model. We also give a mechanism generating the μ\mu-term of the Electro-Weak scale by a singlet field coupled with the SCFT.Comment: 28 pages, 8 figures, LaTeX file; corrected typos and references adde
    corecore